

Def. A function
$$
f: A \rightarrow B
$$
 is also called a "map" from $A + B$.

\nA is the "source" of the map f :

\nB is the "target" of the map f .

Visualizing ^a real valued function of one variable using its graph in the ruy plane.

MATH1520C University Mathematics for Applications Spring 2021

Chapter 1: Notation and Functions

Learning Objectives:

(1) Identify the domain of a function, and evaluate a function from an equation.

(2) Gain familiarity with piecewise functions.

- (3) Study the vertical line test.
- (4) Know how to form and use composite functions.

1.1 Set

- *•* **Set** is a collection of objects (called **elements**)
	- 1. Order of elements does not matter. E.g. $\{1, 2, 3\} = \{3, 2, 1\}$.
	- 2. Representation of a set is not unique. E.g. $\{-2, 2\} = \{x \mid x^2 = 4\}.$
- $\bullet \in \mathbb{R}$: belongs to. If *a* is an element of *A*, we say that *a* belongs to *A*; denoted as $a \in A$. $\widetilde{}$
- \subset : subset of. Let *A*, *B* be two sets such that $\forall a \in A$, $a \in B$. Then we say that *A* is a \sim subset of *B*; denoted as $A \subset B$. n it(Y)
A Tforah

Remark. $A \subset B$ is sometimes written as $A \subset B$ to emphasize the fact that $A = B$ is a possibility. If $A \subset B$ but $A \neq B$, then *A* is said to be a *proper subset* (or a strict subset) of *B*, written as $A \in B$.

 $A \subset B \Leftrightarrow B \supseteq A$: *B* is a *supset* of *A*. M

Example 1.1.1.

- 1. $A = \{1, 2, 3\}, B = \{2, 3, 5, 7\}, C = \{\underline{1}\}, 2, 3, 4, 5\}.$ Then $A \subseteq C$ (in fact $A \in \mathcal{Q}$), $1 \in A$, $A = \{1, 2, 3\}, B = \{2, 3, 5, 7\}, C = \{\underline{1}\}\{2, 3, 4, 5\}.$ Then $A \subseteq C$ (in fact $A \subseteq \mathcal{B}$)
but $1 \notin B$ and $B \nsubseteq C$. $\begin{matrix} \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ C \cdot & B \cdot \end{matrix} \mapsto \begin{matrix} \vdots & \vdots \\ \vdots & \vdots \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ C \cdot & C \cdot \end{matrix} \mapsto \begin{matrix$ IEC_1 but $14B$
- 2. $C =$ the set of all students studying at CUHK. $M =$ the set of all math major students currently studying at CUHK. Then $M \subseteq C$. You $\in C$.

Example 1.1.2. Some important number sets:

- 1. N: the set of all natural numbers (positive integers) = { $1, 2, 3, \ldots$ }.
- 2. \mathbb{Z} : the set of all integers = { \dots , -3, -2, -1, 0, 1, 2, 3, ...}. \sim \ldots , -3, -2, -1, 0, 1, 2, 3, \ldots }. = $\{ \emptyset, \pm \}$, ± 2 ,
- 3. Q: the set of all rational numbers $=$ { $\frac{a}{b}$ | $a, b \in \mathbb{Z}, b \neq 0$ }.

run

4. R: the set of all real numbers.

Remark. If the elements in a set can be ordered and the ordering are taken into account in the definition, then it is called an *ordered set*. E.g. N*,* Z*,* Q*,* R may call be viewed as ordered sets.

1.2 Intervals

- $[a, b] = \{x \mid a \le x \le b\}$. (closed interval)
- $(a, b) = {x | a < x < b}$. (open interval)
- $(a, b] = \{x \mid a < x \leq b\}.$ \sim
- $[a, \infty)$: the set of all real numbers *x* such that $a \leq x$. \sim

Drawing open/closed intervals on the real line:

1.3 Set operations

Let *A*, *B* be two sets:

2. Show that $\mathbb{R}\setminus[1,\infty)=(-\infty, 1)$.

m

1.4 Functions

Definition 1.4.1. A **function** is a rule that assigns to EACH element *x* in a set *A* EXACTLY ONE element *y* in a set *B*. If the function is denoted by *f*, then we may write

The set *A* is called the domain of the function. The set *B* is called the codomain of *f*. The assigned elements in *B* is called the range of *f*.

 $f(\chi)$ *x* is the independent variable of *f*, and *y* is the dependent variable of *f*. Given $a \in A$, $f(a) \in B$ is said to be the *value* of the function f at a . Given $S \subset A$, $f(S) := \{f(a) | a \in S\} \subseteq \mathbb{R}$ f_{subset} of A.

is said to be the *image* of *S* under *f*. In particular, the "range" of *f*, as defined above, is $f(A) \subset B$.

When the domain and range of a function are both sets of real numbers, the function is said to be a real-valued function of one variable, and we write $\check{}$

$$
f:\mathbb{R}\to\mathbb{R}.
$$

Most functions encountered in this course are real-valued functions of one variable. Unless otherwise specified, a function is a real-valued function of one variable in this course.

Remark. There is some ambiguity in the definition of "range" in math literature. See the Wiki article.

Example 1.4.1. $f : [-1,3) \rightarrow \mathbb{R}$ is defined by $f(x) = x^2 + 4$ (sometimes written as $y =$ $x^2 + 4$). Then $f(0) = (0)^2 + 4 = 4.$ domain = [-1, 3), codomain = \mathbb{R} , range of $f = [4, 13]$.
 $\begin{matrix} 2 \\ 3 \end{matrix} + 4$ N $when f = 0$

Remark. If a function is given by a formula without domain specified, then assume domain $=$ set of all x for which $f(x)$ is well defined, this domain is also called the natural domain of *f*.

Example 1.4.2. Find the natural domain of the functions.

1.
$$
f(x) = \frac{1}{x-3}
$$
 \leftarrow this formula makes sense $\forall x \in \mathbb{R}$ except
\n $f \rightarrow x = 3$: Natural domain $\forall x \in \mathbb{R}$
\n2. $g(t) = \frac{\sqrt{3-2t}}{t^2+4}$.
\n \leftarrow \leftarrow

Solution.

t ^E IR the denominator 1 ² 4 can neverbe ^a FEE is notwell defined when ³ at ^o

- 1. $\frac{1}{1}$ $\frac{1}{x-3}$ is not defined when its denominator $x-3=0$, i.e. $x=3$. So the domain is R*\{*3*}*.
- 2. The domain of $\sqrt{3 2t}$ consists of all *x* such that $3 2t \ge 0$, which implies that $t \le \frac{3}{2}$. Hence the domain is $(-\infty, \frac{3}{2}].$

$$
\gamma^2 - 1 = (\gamma - 1)(\gamma + 1)
$$

Example 1.4.3. Let $f(x) = \frac{x^2 - 1}{1}$ and $g(x) = x + 1$. Can we say *f* and *g* are the same $\frac{x-1}{x}$ function? *Solution.* No! The domain of $f(x)$ is $\mathbb{R} \setminus \{1\}$, the domain of $g(x)$ is \mathbb{R} . Only when $x \neq 1$, $f(x) = g(x)$. $\frac{1}{\sqrt{1+\epsilon}}$ = x f is well-defined only when $x-1 \pm c$ \overline{t}

◼

1.4.1 Vertical Line Test for Graph

A way to visualize a function is its graph. If *f* is a real-valued function of one variable, its graph consists of the points in the Cartesian plane \mathbb{R}^2 whose coordinates are the inputoutput pairs for *f*. In set notation, the graph is

$$
\bigcap f(f\big) \simeq \{ (x,y) \in \mathbb{R}^2 : x \in \mathbb{R}, y = f(x) \}.
$$

Review: Graphing a real-valued function of one variable: [HBSP] 1.2.

Example 1.4.4. linear functions; piecewise linear functions; quadractic functions, exponential and log functions, trig functions.