

The graph" of the real-valued function of

$$T(f) = f(x,y)$$
 $y = f(x)$ $f(x,y)$

MATH1520C University Mathematics for Applications

Chapter 1: Notation and Functions

Learning Objectives:

(1) Identify the domain of a function, and evaluate a function from an equation.

(2) Gain familiarity with piecewise functions.

- (3) Study the vertical line test.
- (4) Know how to form and use composite functions.

1.1 Set

- Set is a collection of objects (called elements)
 - 1. Order of elements does not matter. E.g. $\{1, 2, 3\} = \{3, 2, 1\}$.
 - 2. Representation of a set is not unique. E.g. $\{-2, 2\} = \{x \mid x^2 = 4\}$.
- \in : belongs to. If a is an element of A, we say that a belongs to A; denoted as $a \in A$.
- \subseteq : subset of. Let A, B be two sets such that $\forall a \in A, a \in B$. Then we say that A is a Subset of *B*; denoted as $A \subset B$. for all

Remark. $A \subset B$ is sometimes written as $A \subset B$ to emphasize the fact that A = B is a possibility. If $A \subset B$ but $A \neq B$, then A is said to be a proper subset (or a strict subset) of *B*, written as $A \Subset B$.

 $A \subset B \Leftrightarrow B \supset \widehat{A}$: *B* is a supset of *A*.

Example 1.1.1.

- 1. $A = \{\underline{1, 2, 3}\}, B = \{2, 3, 5, 7\}, C = \{\underline{1, 2, 3}, 4, 5\}.$ Then $A \subseteq C$ (in fact $A \Subset \mathcal{B}$), $1 \in A$, but $1 \notin B$ and $B \not\subseteq C$. $P \subseteq C$ $P \subseteq C$ $P \subseteq C$ $P \subseteq C$
- 2. C = the set of all students studying at CUHK. M = the set of all math major students currently studying at CUHK. Then $M \subseteq C$. You $\in C$.

Example 1.1.2. Some important number sets:

- 1. N: the set of all natural numbers (positive integers) = $\{1, 2, 3, \ldots\}$.
- 2. \mathbb{Z} : the set of all integers = {..., -3, -2, -1, 0, 1, 2, 3, ...} = $\{0, 2, 1, 2, 2, ...\}$
- 3. Q: the set of all rational numbers = $\{\frac{a}{b} \mid a, b \in \mathbb{Z}, b \neq 0\}$.

4. \mathbb{R} : the set of all real numbers.

Remark. If the elements in a set can be ordered and the ordering are taken into account in the definition, then it is called an *ordered set*. E.g. $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ may call be viewed as ordered sets.

1.2 Intervals

- $[a,b] = \{x \mid a \le x \le b\}$. (closed interval)
- $(a,b) = \{x \mid a < x < b\}$. (open interval)
- $(a,b] = \{x \mid a < x \le b\}.$
- $[a,\infty)$: the set of all real numbers x such that $a \leq x$.

Drawing open/closed intervals on the real line:

1.3 Set operations

Let A, B be two sets:

(c) $\mathbb{R} \setminus [2,3)$. = (-(2,3)) () (3, b)

2. Show that $\mathbb{R} \setminus [1, \infty) = (-\infty, 1)$.

1.4 Functions

Definition 1.4.1. A function is a rule that assigns to EACH element x in a set A EXACTLY ONE element y in a set B. If the function is denoted by f, then we may write

The set A is called the domain of the function. The set B is called the codomain of f. The assigned elements in B is called the range of f.

 $f(S) := \{f(a) \mid a \in S\} \subset B$ is the independent variable of f, and y is the dependent variable of f. Given $a \in A$, $f(a) \in B$ is said to be the value of the function f at a. Given $S \subset A$, $f(S) := \{f(a) \mid a \in S\} \subset B$

is said to be the *image* of S under f. In particular, the "range" of f, as defined above, is $f(A) \subset B$.

When the domain and range of a function are both sets of real numbers, the function is said to be a real-valued function of one variable, and we write

$$f: \mathbb{R} \to \mathbb{R}.$$

Most functions encountered in this course are real-valued functions of one variable. Unless otherwise specified, a function is a real-valued function of one variable in this course.

Remark. There is some ambiguity in the definition of "range" in math literature. See the Wiki article.

Example 1.4.1. $f: [-1,3) \to \mathbb{R}$ is defined by $f(x) = \underbrace{x^2 + 4}_{x^2 + 4}$ (sometimes written as $y = x^2 + 4$). Then $\underbrace{f(0) = (0)^2 + 4 = 4}_{0}$ domain = [-1,3), codomain = \mathbb{R} , range of f = [4,13]. *Remark.* If a function is given by a formula without domain specified, then assume domain = set of all x for which f(x) is well defined, this domain is also called the natural domain of f.

Example 1.4.2. Find the natural domain of the functions.

1.
$$f(x) = \frac{1}{x-3}$$
. this formula makes sense $\forall x \in \mathbb{R} \times cept$
 $for \quad x = 3$. Natural domain for f.
2. $g(t) = \frac{\sqrt{3-2t}}{t^2+4}$. $is \quad \mathbb{R} \setminus 233$
 $t \in \mathbb{R}$, the demandation t^2 , is can include be p

Solution.

- 1. $\frac{1}{x-3}$ is not defined when its denominator x-3=0, i.e. x=3. So the domain is $\mathbb{R}\setminus\{3\}$.
- 2. The domain of $\sqrt{3-2t}$ consists of all x such that $3-2t \ge 0$, which implies that $t \le \frac{3}{2}$. Hence the domain is $(-\infty, \frac{3}{2}]$.

$$\chi^{2}-I = (\chi-I)(\chi+I)$$

Example 1.4.3. Let $f(x) = \frac{x^2 - 1}{x - 1}$ and g(x) = x + 1. Can we say f and g are the same function? Solution. No! The domain of f(x) is $\mathbb{R} \setminus \{1\}$, the domain of g(x) is \mathbb{R} . Only when $x \neq 1$, f(x) = g(x).

1.4.1 Vertical Line Test for Graph

A way to visualize a function is its graph. If f is a real-valued function of one variable, its graph consists of the points in the Cartesian plane \mathbb{R}^2 whose coordinates are the inputoutput pairs for f. In set notation, the graph is

$$[f] := \{(x,y) \in \mathbb{R}^2 : x \in \mathbb{R}, y = f(x)\}.$$

Review: Graphing a real-valued function of one variable: [HBSP] 1.2.

Example 1.4.4. linear functions; piecewise linear functions; quadractic functions, exponential and log functions, trig functions.